An Empirical Analysis of Different Machine Learning Techniques for Classification of EEG Signal to Detect Epileptic Seizure

نویسندگان

  • Sandeep Kumar Satapathy
  • Alok Kumar Jagadev
  • Satchidananda Dehuri
چکیده

Electroencephalogram (EEG) signal is a modest measure of electric flow in a human brain. It is responsible for information flow through the neurons in the brain which controls and monitors the full torso. Hence, to widening and in-depth understanding of effectiveness in EEG signal analysis is the primary focus of this paper. Moreover, machine learning techniques often proven as more efficacious compared to other techniques. To this effect, the present study primarily focuses on the analysis of EEG signal through the classification of the processed data by discrete wavelet transform (DWT) for identification of epileptic seizures using machine learning techniques. Machine learning techniques like neural networks and support vector machine (SVM) are the focus of this paper for classification of EEG signals to label epilepsy patients. In neural networks, the empirical analysis gives focus on multi-layer perceptron, probabilistic neural network, radial basis function neural networks, and recurrent neural networks. Further, for multi-layer neural networks different propagation training algorithms are examined such as BackPropagation, Resilient-Propagation, and Quick-Propagation. For SVM, several kernel methods are considered such as Linear, Polynomial, and RBF for empirical analysis. The analysis confirms with the present setting that, recurrent neural network performs poor in all the cases of prepared epilepsy data. However, SVM and probabilistic neural networks are quite effective and competitive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

P81: Detection of Epileptic Seizures Using EEG Signal Processing

Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...

متن کامل

Prediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal

Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...

متن کامل

Epileptic Seizure Detection by Exploiting Temporal Correlation of EEG Signals

Electroencephalogram (EEG), a record of electrical signal to represent the human brain activity, has great potential for the diagnosis to treatment of mental disorder and brain diseases such as epileptic seizure. Features extraction and classification of EEG signals is the crucial task to detect the stage of ictal (i.e., seizure period) and interictal (i.e., period between seizures) signals for...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Informatica (Slovenia)

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2017